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Silica Under Very Large Positive and Negative 
Pressures: Molecular Dynamics Simulations on 
Parallel Computers I 

P. Vashishta,  2'3 R. K. Kalia, 2 A. Nakano,  2 and W. Jin 2 

A highly efficient multiresolution algorithm has been developed to carry out 
large-scale molecular dynamics (MD) simulations for systems with long-range 
Coulomb and three-body covalent interactions. The algorithm combines the 
reduced cell and fast multipole methods and multiple time-step approach. 
Pressure-induced structural transformation, loss of intermediate range order, 
and dynamical correlations in SiO2 glass are investigated with the molecular- 
dynamics method. At twice the normal density, the Si-O bond length increases, 
the Si-O coordination changes from 4 to 6, and the O-Si-O band-angle 
changes from 109 to 90 °. This is a tetrahedral-to-octahedral transformation, 
which was reported by Meade, Hemley, and Mao. Results for phonon density 
of states also reveal significant changes at high pressures. The multiresolution 
MD approach has been used to investigate the structural properties and 
mechanical failure in microporous silica. Structural correlations are charac- 
terized by the fractal dimension, internal surface area, and pore surface-to- 
volume ratio. Critical behavior at fracture is analyzed in terms of pore percola- 
tion, and kinetic roughening of fractured surface is also investigated. 
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systems with finite-range interactions, a domain-decomposition algorithm 
is used to implement the multiple-time step (MTS) approach to MD 
simulations on distributed-memory MIMD (multiple instruction multiple 
data) machines. Parallel algorithms are also designed for MD simulations 
of bulk Coulombic systems. The performances of these algorithms are 
tested on the Intel Touchstone Delta and IBM SP1 architectures. The 
computational complexities of these algorithms are O(N) and parallel 
efficiencies close to 0.9. 

Recently Meade, Hemley, and Mao have carried out in situ high- 
pressure (8-to 42-GPa) X-ray diffraction experiments on SiO2 glass [4]. 
These measurements reveal significant changes in the short-range and inter- 
mediate-range order (IRO). MD simulations are used to investigate the 
structural transformation, loss of intermediate-range order, and dynamical 
behavior of SiO2 glass at high pressures [5]. 

Porous silica has numerous technological applications [6]. Since these 
applications are due to the remarkable porous structure of the system, it is 
important to understand the size and spatial distributions of pores [7, 8] 
and the morphology of pore interfaces [9]. Simulations of porous silica, 
in the density range 2.2-0.1 g . c m  -3, are carried out on 41,472- and 
1,119,744-particle systems using MIMD computers. 

2. MULTIRESOLUTION MD ALGORITHM 

Realistic modeling of materials relies on high-quality interatomic 
potentials. They must include the effects of the long-range Coulomb inter- 
action, charge-dipole interaction+ steric hindrance, and covalent bonding 
[ 10]. The use of these potentials for large systems requires enormous com- 
puting resources. The most prohibitive factor for large-scale MD simula- 
tions is the long-range Coulomb potential. The evaluation of the Coulomb 
potential for an N-particle system requires O(N 2) operations, which makes 
large-scale MD simulations difficult. 

The development of hierarchical algorithms has resolved this difficulty. 
The fast multipole method (FMM) employs truncated multipole expan- 
sions for the potential field, and calculates the Coulomb potential with 
O(N) operations [11]. In the FMM, a hierarchy of cells is defined by 
dividing the total system into smaller cells. To achieve a consistent 
accuracy, farther cells are combined to form a larger cluster of cells, and 
multipoles are calculated for those clusters at lower levels of the hierarchy 
(see Fig. lb). For many simulations in materials science, the summation 
over repeated images of the original system needs to be performed to mini- 
mize surface effects. Recently the reduced-cell multipole method (RCMM) 
has been developed to carry out the infinite summation most efficiently [2, 
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Fig. 1. Multiresolution in space. Ca) Periodically repeated images of the original MD box. 
Replacing far images by a small number of particles with the same multipole expansion up to 
a certain order reduces the computation enormously while maintaining the necessary 
accuracy. (b) A hierarchy of cells used in the fast multipole method. (c) The near-field force 
on a particle is due to primary, secondary, and tertiary neighbor particles. 

12]. Distant images each including multimillion particles can be replaced, 
without loss of accuracy, by a few tens of particles which have the same 
leading multipoles as the original system. The Edwald summation is carried 
out for these reduced images with little computation effort (see Fig. la). 

Another computational difficulty arises from the non-Coulombic part 
of the potential. For a realistic description of materials, the potential in the 
medium range (below r c ~ 5-10 A) involves complicated non-Coulombic 
terms. In the FMM, the smallest cell of the hierarchy must be larger than 
re. Accordingly, forces from thousands of other atoms in the 27 nearest- 
neighbor cells must be calculated directly, resulting in enormous com- 
puting. 

We employ the multiple-time step (MTS) approach [2, 13] to reduce 
the computation over the medium range of length scales. Contrary to the 
above cell-based methods, this method is adaptive since it uses neighbor 
lists and different time steps are employed for different spatial ranges (see 
Fig. lc). The MTS algorithm typically speeds up a calculation by a factor 
of 5 to 7. 

Three-body potentials are necessary to represent covalent interactions. 
We employ a separable, tensor decomposition scheme to speed up the 
calculation of three-body forces by a factor of two [2, 14]. 

We use the domain decomposition approach to implement the multi- 
resolution MD (MRMD) algorithm on parallel architectures. On a parallel 
computer with p procesors, the simulation system is divided into p sub- 
systems of equal volume, and each physical subsystem is assigned to a pro- 
cessor. To calculate the intermediate-range forces, information about the 
particles in the skin layers must be communicated among the processors. 
The MTS approach reduces the volume of these messages significantly by 
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Fig. 2. Execution time (solid curves) and communication 
time (dashed) per MD time step for SiO,. Circles and 
squares represent the results on the IBM SPI and Intel 
Touchstone Delta, respectively. Here p is the number of 
nodes. The size of the system, N, increases at 8232p. 

skipping the message passing associated with the secondary and tertiary 
neighbors. 

The performance of the multiresolution algorithm is tested for 
variable-shape MD simulations [ 15] of the SiO2 system on the 512-node 
Intel Touchstone Delta machine at Caltech and the 128-node IBM SP1 
system at Argonne National Laboratory.  Figure 2 shows the execution 
time per MD step as a function of the number of processors, p. The 
number of particles is taken to be 8,232 p. For  a 4.2 million-particle system, 
the program requires only 4.84 s per MD step on the 512-node Delta. 
Communication accounts for only 8% of the total elapsed time. On the 
IBM SP1, the computat ion part runs 4.8 times faster than on the Delta, 
while the communication performs at about  the same speed. As a result, 
the communication overhead is slightly larger on the SP1 [2] .  

3. MD S I M U L A T I O N  O F  SILICA AT H I G H  PRESSURES 

Recently Meade et al. [4]  have carried out in situ high-pressure (8- to 
42-GPa) X-ray diffraction experiments on SiO2 glass. These measurements 
reveal significant changes in the short-range and intermediate-range order 
(IRO). The position of the first sharp diffraction peak (FSDP)  in X-ray 
structure factor, the fingerprint of IRO, changes from 1.55 A - '  at 8 G P a  
to 2.37 A - t  at 42 GPa. At the same time, there is a significant decrease in 
the height and increase in the width of the FSDP. Furthermore,  the pair 
correlation function shows that the nearest-neighbor (nn) tetrahedral coor- 
dination of Si-O changes to octahedral coordination as the pressure is 
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increased from 8 to 42 GPa. Raman and infrared spectra at pressures 
greater than 28 GPa reveal the absence of tetrahedral vibrational modes 
[ 16, 17]. 

Molecular-dynamics simulations were performed with interatomic 
potentials comprising two- and three-body terms [10]. The MD simula- 
tions were carried out at normal mass density po=2.20 g-cm -3, and at 
pressures 0.9, 5.4, 22.7, and 42.3 GPa, corresponding to densities p = 2.64, 
2.94, 3.53, and 4.28 g. cm -3, respectively. 

The SiO2 glasses were generated by quenching well-equilibrated 
liquids at high temperatures (~4000 K) [10]. At each temperature and 
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Fig. 3. MD partial pair-distribution 
functions (solid lines) and coordina- 
tion numbers (dashed lines) for SiO_, 
glasses at normal density at 300 K. 



174 Vashishta, Kalia, Nakano,  and Jin 

dens i t y ,  s t r u c t u r a l  a n d  d y n a m i c a l  c o r r e l a t i o n s  w e r e  c a l c u l a t e d  w i t h  M D  

trajectories of at least 30 ps. 
In the normal-density MD glass, the FSDP is located at 1.6 A -  t. With 

an increase in the density, the height of the FSDP decreases, its width 
increases, and its position shifts to higher values of q. Note that simple 
elastic compression [i.e., (P/Po)l/3] cannot account for the observed shift in 
the position of the FSDP. Elastic compression corresponding to density 
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Fig. 4. MD partial pair-distribution 
functions (solid lines) and coordina- 
tion numbers (dashed lines) for SiO2 
glasses at stishovite density at 300 K. 
Sharp peaks in the figure at 
4.28g.cm -3 correspond to pair-dis- 
tribution functions for crystalline 
stishovite. 
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increases of 20, 33, 60 and 95% would shift the FSDP to 1.71, 1.77, 1.88, 
and 2.01 A -l, whereas the simulation results reveal higher values for the 
position of the FSDP: 1.85, 1.94, 2.15, and 2.19 A -~. The high pressure 
X-ray measurements by Meade, Hemley, and Mao [4] reveal similar 
behavior for the FSDP. 

Partial pair-distribution functions, gab(r), at the normal and the 
highest density are shown in Figs. 3 and 4. The position of the first peak 
in gsi_o(r) and the corresponding Si-O coordination remain unchanged 
up to 3.53 g-cm -3. At a pressure of 42.3 GPa, where the glass density 
(4.28 g .cm -~) reaches the stishovite density, the first peak in gsi_o(r) 
occurs at 1.67 instead of 1.61 A and the Si-O coordination increases from 
4 to 5.8. In stishovite, the highest-density crystalline phase of SiO2, Si-O 
bond lengths are 1.76 and 1.81 A and the Si-O coordination is 6. In the 
glass at 4.28 g. cm -3, the second peak in gs,-o(r) is at 3.15 A, close to the 
next-nearest-neighbor (nnn) Si-O distance (~3.20 A) in the stishovite [5]. 

Figures 3 and 4 also show how the Si-Si pair-distribution function 
changes upon densification. The first peak splits into two peaks when the 
density increases to 4.28 g-cm -3. One of these peaks is located at 2.59/k, 
close to the nn Si-Si distance (2.67 A) in the stishovite. The second peak 
appears at 3.07 A, which is close to the nnn Si-Si distance (3.24 A) in the 
stishovite. The area under the first peak gives a coordination of 2, while the 
area under the first two peaks is 10. At normal density, the nn O-O coor- 
dination is 6. It increases to 10 at 3.53 g. cm-3 and to 12 at 4.28 g-cm -3. 
In Stishovite, the O-O coordination is 12. 

At normal density, the O-Si-O bond angle distribution has a peak at 
109 °, with a full width at half maximum (FWHM) of 10 °. There is a 
dramatic change in the distribution when the glass density reaches the 
stishovite density: the O-Si-O distribution has broad peaks at 90 and 171 °. 
On the other hand, in the crystalline stishovite, the O-Si-O angles are 
81.35, 90, 98.65, and 180 °. In the normal-density SiO2 glass, the Si-O-Si 
bond-angle distribution has a peak at 142 ° and the FWHM of this peak is 
26 ° [ 10, 18]. At the stishovite density, the Si-O-Si bond angle in the glass 
has broad peaks around 95 and 128 °. These values are close to the Si-O-Si 
angles, 98.65 and 130.67 °, in the stishovite crystal. Thus, the results for 
pair-distribution functions and bond-angle distributions at 4.28 g .cm -3 
contain strong evidence for distorted Si(Oi/3) 6 octahedra in the glass, 
joined at corners and sharing edges as well. 

4. MD SIMULATION OF POROUS SILICA 

From the technological standpoint, it is important to know the size 
distribution, the internal surface area and surface-to-volume ratio, and the 
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Fig. 5. MD results on fractal dimension as 
a function of density. Open circles are for 
MD configurations prepared at temperature 
300 K, while filled circles are for 1000 K. 

interface texture of pores in porous glasses. MD simulations were per- 
formed to determine these structural parameters over a wide range of den- 
sities, from 2.2 to as low as 0.1 g. cm -3 [7, 8]. The MD simulations reveal 
a structural transition from the condensed amorphous phase to a low-den- 
sity porous phase. The latter is a fractal network whose dimensionality 
decreases rapidly with a decrease in the density. Figure 5 shows the fractal 
dimension as a function of the density. 

Recent experiments on a wide variety of materials reveal that fracture 
surfaces exhibit scaling properties. The root-mean-square surface fluctua- 
tions averaged over a distance 1 obey the scaling relation, W ~ l L  The 
roughness exponent, ~, of cracks in a variety of brittle materials has been 
found to be close to 0.87 [9] .  This has led to the suggestion that the 
roughness exponent for fracture surfaces has a universal value. However, 
the universality of the roughness exponent on the nanometer scale is still 
an unresolved issue. 

We have performed large-scale MD calculations on amorphous silica, 
investigating the growth of pores with a decrease in the density of the 
system. At a critical density, some pores percolate through the entire 
system by catastrophic growth. 

We analyze the interface roughness of a percolating pore by defining 
a two-dimensional height function, h(x,  y) ,  for the pore. The height-height 
correlation function, g(a), is defined as 

g(a)  = ( [ h ( x  + Xo, y + Yo) - h(xo,  Yo) ] 2) u2 (1) 

where a = (x  2 +y2)1/2. The function scales as g(a)  a: a ~. The exponent 7 is 
found to be 0.87_+0.01 (see Fig. 6). This is in excellent agreement with 
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Fig. 6. The height-height correlation function of a per- 
colating pore at a mass density of 1.4 g.cm -3. The open 
circles are the MD results and the solid curve represents 
g(a) ~ ~ .  

experimental measurements on mesoscopic and macroscopic length scales. 
These MD results support the conjectured universality of the roughness 
exponent even on the nanometer scale [ 19]. 
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